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Abstract. Imposing an approximate PoincarC invariance on the metric tensor in the 
post-Newtonian scheme of general relativity, we find a recursive method which gives 
restrictions to the gauge conditions at each order of approximation. Those restrictions are 
explicitly calculated up to the second post-Newtonian approximation (PNA) for a bounded 
perfect fluid. At the first PNA we choose the harmonic gauge, which satisfies the imposed 
restrictions, but at the second PNA the harmonic gauge does not give a PoincarC-invariant 
metric tensor and we choose a modified harmonic gauge instead. Using these gauges, the 
gravitational interaction can be described by approximate PoincarC-invariant equations of 
motion in the framework of predictive relativistic mechanics. 

1. Introduction 

The equations of motion for a gravitating system can be obtained from the general 
relativity theory by using different approximation methods. One of them is the 
so-called ‘slow motion’ approximation. 

The slow motion approximation was introduced by Einstein et a1 (1938) (referred to 
as EIH) who derived the equations of motion approximated up to terms of order c-*, the 
first post-Newtonian approximation (first PNA), for a gravitationally interacting system 
of point masses, which are considered as singularities of the metric tensor. 

A different approach was considered for the study of a bounded fluid by 
Chandrasekhar (1965), who derived, in the first PNA, the hydrodynamic equations for a 
relativistic perfect fluid. Using Chandrasekhar’s post-Newtonian method, the 
equations of motion for point masses of EIH can also be rederived (Spyrou 1975). 

As is well known, the equations of motion in the first PNA are PoincarC invariant in 
the sense that under a post-Galilean, PoincarC-like coordinate transformation the 
equations of motion in the new coordinates have the same functional form as in the old 
coordinates. For a discussion of the post-Galilean transformations for a system of point 
masses, see Chandrasekhar and Contopoulos (1967), and for a perfect fluid system see 
Spyrou (1 976). 

Such invariance makes possible the description of the gravitational interaction, in an 
approximate way (up to order c-’), within a special relativity theory like predictive 
relativistic mechanics (PRM). This theory was developed by Currie (1966), Hill (1967) 
and Bel (1970), and in it the interactions between particles are described by second- 
order differential equations of motion. 

t On leave from Universitat Autonoma de Barcelona, Spain. 
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In a previous paper (Verdaguer 1978, hereafter referred to as I) it was shown that 
the gravitational interaction for a system of point masses can also be described in the 
framework of PRM up to order c - ~  (the second PNA). That was achieved by solving the 
Einstein field equations in the de Donder coordinate condition (harmonic gauge), in 
which the equations of motion of the system are second-order differential equations and 
Poincart invariant in the sense described above. It must be pointed out that in a PNA 

scheme at a given order, we always get second-order differential equations of motion 
because higher-order time derivatives of the positions can be removed using the 
equations of motion at lower orders. On the other hand, the PoincarC invariance of 
those equations is a direct consequence of the particular gauge imposed. The 
imposition of a gauge is a requirement of the covariance of the Einstein field equations. 

In this paper we want to discuss the direct relation between the PoincarC invariance 
of the metric tensor and the gauge conditions in a post-Newtonian scheme of general 
relativity. Invariance of the metric tensor at a given order under a coordinate 
transformation implies invariance of the equations of motion at the same order under 
the same coordinate transformation, but in a lower order in the time-coordinate part of 
the transformation. This is due to the non-symmetric role played by the temporal and 
spatial coordinates in the slow-motion approximation scheme. For instance, as was 
shown in I, the metric tensor up to second PNA using the harmonic gauge was not 
PoincarC invariant even if the equations of motion were. The same is true in the first 
PNA metric tensor, which is not PoincarC invariant in the gauge used by Chandrasekhar 
and Contopoulos, while the equations of motion are. 

We follow the post-Newtonian scheme of Chandrasekhar for a bounded perfect 
fluid and we devote our attention to the near zone only, where the source fluid is 
located. 

In § 2, starting with a post-Newtonian scheme for Einstein’s field equations, we 
define the gauge functions which must be used to impose coordinate conditions at each 
order of the approximation. Imposing Poincart invariance up to order N, we find 
recursive relations for the gauge functions and conclude that, in order to obtain a 
PoincarC-invariant metric tensor at each level of approximation, only gauge functions 
satisfying the mentioned relations can be imposed on the field equations. 

In § 3 ,  we apply those relations for a bounded perfect fluid up to the first PNA. It is 
found that there is an infinite set of gauge functions in which the first PNA metric tensor 
is PoincarC invariant, the harmonic gauge function at this order belonging to this set. 
Obviously the gauge used by Chandrasekhar and Contopoulos does not satisfy the 
required relations. 

In § 4, having chosen the harmonic coordinate condition in the first PNA, the explicit 
relations for the gauge functions up to the second PNA are derived. The harmonic gauge 
functions at this order do not satisfy the above relation, as is also obvious from I. 
However, a ‘quasi-harmonic’ gauge condition can be chosen, with only small changes in 
one kind of term in the harmonic gauge functions, satisfying the required relations. In 
the quasi-harmonic gauge, the equations of motion have the same functional form as in 
the harmonic gauge. 

In order to extend those results to higher orders of approximation, i.e. 2;-, ~ - P N A  

etc, the quasi-harmonic gauge could be used. However, as it is generally accepted, the 
reaction effect due to the gravitational wave radiation must appear at the order c - ~  
( 2 3 - p ~ ~ )  of the equations of motion. To take account of the gravitational radiation 
effect, the post-Newtonian scheme of Chandrasekhar must be altered by including a 
radiation condition in the far zone. It must be pointed out that the PNA scheme breaks 
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down at the far zone because it is based in the first-order substitution of the Laplacian 
operator (instantaneous potential) for the d’Alembert operator (retarded or advanced 
potential), which is only valid in the near zone. A different approximation to the field 
equations must be used in the far zone and the solutions in this zone must be finally 
matched with the solutions in the near zone. For a discussion of these problems, see 
Burke and Thorne (1970), Burke (1971) and Ehlers et aZ(1976). Chandrasekhar and 
Esposito (1970) evaluated the gravitational radiation effect, using the Sommerfeld 
radiation condition and imposing the harmonic gauge condition on the field equations. 

2. Restrictions to the gauge functions imposed by Poincare invariance 

‘The Einstein field equations, 

R,, = -(8rG/c4)(T,, -;Tg,,) (/4 1, = 0,132 3) (2.1) 

where R,, is the Ricci tensor, TPy the energy-momentum tensor, g,, the metric tensor 
and G the gravitational constant, can be solved in a slow-motion approximation 
scheme. This method is based on the expansion of the metric tensor in powers of c-l: 

L 

( L )  L 

whe:e 77,” = diag(1,-1, -1, -1) is the Minkowskian metric tensor. The notation f 

and f in the sense of (2.2) will have the following meaning in the rest of the paper: f 
without brackets is one of the coefficients of the c-l expansion and f is the approxima- 
tion to the actual function f. 

The basic assumption (expansion in powers of c-’) involved in the slow 
approximation implies that the PNA is only valid in the ‘near zone’ whose retarded 
potentials can be approached by instantaneous potentials, the retarded term appearing 
always in the next step of approximation. 

The field equations (2.1) can be written, up to order N, in the form of Poisson-like 
equations: 

( L )  

( 2 . 3 ~ )  

(2.3b) 

N N 1N N+1 N+1 1N 
where wI= g [ k , k - Z g k k , , ,  w =gok,k-Zgkk,t ,  the subindex ,[ stands for d/aX ‘  and ,o for 

(NI  (N+1) ( N + 2 )  
c-’d/at, A=a2 /dx‘  ax’ is the Laplace operator and the functions S,, ,  Sol and Soo 

depend on g,, go[ , goo and TIL,, L < N (we assume that the energy-momentum 
tensor begins at order c’). The integrability conditions of ( 2 . 3 ~ )  and (2.3b) lead to the 
conclusion that the functions W, and W can be considered arbitrary functions (see I); 
we shall call them gauge functions. 

( L )  (L+1) (L+2) ( N - 2 )  

N N+1 
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N N + l  
For given Wi and W we can obtain, by an iterative method from equations (2.3),  

the instantaneous potentials gij, goi and goo. Such potentials are obviously found, with 
the arbitrariness of harmonic functions which must be determined as a consequence of 
matching the near zone with the outer zone. 

Our purpose is to require the metric tensor to be invariant, up to order N, under a 
PoincarC transformation. The invariance of the metric tensor under a three-dimen- 
sional rotation is easily obtained by requiring S i j ,  Soi and Soo to be tensor, vector and 

scalar functions respectively at each order. Note that Wi and W must be a vector and a 
scalar function respectively. The invariance under space and time translations is also 
easily obtained since the potentials g i j ,  goi and goo can be derived, from the 
Poisson-like equations (2.3), in a form dependent only on relative positions between 
field and source and without explicit time dependence. 

The invariance under a pure Lorentz transformation of velocity V must be 
considered in detail: let two coordinate systems, labelled by x W :  (x, ct) and 5” : (5, CT), 
be connected by a pure Lorentz transformation up to order N. This transformation can 
be expressed by 

N N + l  N+2 

(NI  (N+1) (N+2) 

N N+1 

(NI  ( N + 1 )  ( N + 2 )  

Li At zero order we have the pure Galilean transformation of velocity V. The functions $ 

and 77 ( L  
L 

2)  are given by the expressions 

L .  L $‘=fit. V/V2-7)Vi  L a 2  

(2.4b) 
L L L-2 
77’YT- Y (5 .  V) L s 2  

L 
where comes from 

( 2 . 4 ~ )  

The parameter V has, up to order N, the physical meaning of a relative uniform 
velocity between the two frames: 

& =  VT+O(C-(N+2)) x = -vVt+O(C-(N+2)). 

Now, we introduce the following notation: a function f ( x W )  (generally a potential) 
will be written f and the same functional form in terms of the new coordinates, f(5’), 
will be written f’. Moreover, when the function f must be written in terms of the new 
coordinates, using the transformation law (2.4),  we will write 

N ” 
L = O  L ( N )  0 

-L f=y+y 
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The first expression defines (function of the new coordinates t’), and the second one 
defines f”. This last function depends only on the pure Galilean transformation and is 
not affected by the non-preservation of simultaneity attached to a Lorentz 
transformation. 

The condition of metric tensor invariance under a pure Lorentz transformation LDLp 
up to order N can be expressed in the form 

L 

( N )  (N+1)  ( N + l )  
g; .  =LaiL”gaP +O(c-(N+’)) g& = LnOLPigap + O(c-(N+z)) (2.6) 

The role played by the gauge functions in the transformation law is better emphasised 
using, instead of (2.6), their Laplacian form 

(2.7b) 

where A’ = d2/d[‘ a[’. As the metric tensor coefficients are arbitrary up to the addition 
of harmonic functions, equations (2.7) do not give any further restriction on the 
functions W, and W .  

Now, equations (2.7) have to be written in terms of the new coordinates: the Lorentz 
transformation L; has to be written in terms of its c-’ expansion according to (2.4), 
starting at first order with 1, c-’V’ and 8; for L:, Lf, and Lj respectively. The notation 
(2.5) has to be used, and we can see that the higher-order potentials g,], go, and gAo 

cancel in the three respective equations (2.7) but not the corresponding g’;,, g& and g l 0  
which, after using the field equation (2.5), will include the gauge functions. 

It is convenient, for our iterative scheme, to write on the left-hand side the 
dependence on Ibz,], b”,, and Wyo respectively for the three equations (2.7) and which 
correspond to the use of the Lorentz transformation at the first order. We leave on the 

(N,l (N+,I) ( N + p  
right-hand side most of the rest of the terms and call them A,], A ,  and A 
Equations (2.7) can then be written in the form 

N N+1 

P j  N:l N+2  

N N + l  N+Z 

NJ N+1) (N+1)  

( 2 . 8 ~ )  

(2 .8b )  

where the subindex , i  under a function of the new coordinates 5” stands ford/&$’, and ,o 
for c-’ a / a ~ .  
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Equations (2.8) are a system of recurrence equations which give conditions on the 
gauge functions W: and W’ (or equivalently W, and W).  Equations ( 2 . 8 ~ )  are a 

differential system for the function W’i. From it, assuming integrability, we completely 

obtain W‘i (with the addition of arbitrary harmonic functions which are not considered). 
The solution of the homogeneous equation has the form ~ ‘ ( 7 )  + e”k~’bk(T),  which is 
harmonic, and its contribution to W’i is not considered. 

N N+1 N V + l  

N 

N 

N 

A’ N 
Once the function W’: is known, the function W: is partially known: according to the 

pure Galilean transformation we only know the terms depending on the velocities of the 
sources. We call W: the ‘static’ part of W: for which W’i = 0. 

N N N 

Then, from (2.8b) and ( 2 . 8 ~ )  we can write 

N+1 N N+1 N N + 2  

(2.9) 
N N  N + l  

where fi and f are known. The integrability conditions of this system are curl( f ’  ) = 0 

and fi,t = f i t  . In this case a function g’ is completely determined and is related to the 
gauge functions by 

N + l  N + 2  N + l  

Only gauge functions satisfying ( 2 . 8 ~ )  and (2.10) give a metric tensor invariant under a 
PoincarC transformation up to order N. 

This iterative method can be followed in the successive post-Newtonian 
approximations and we will explore it up to the second PNA for the specific case of a 
bounded perfect fluid. 

3. Restrictions at the first post-Newtonian approximation 

In this section we explicitly find the conditions that the gauge functions must satisfy in 
order to have a metric tensor PoincarC invariant in the first PNA for a perfect fluid. 

A perfect fluid is defined in general relativity by the energy-momentum tensor 

T,Y = P(c2+~++/P)u,U”-pg,”  

where p is the pressure, U, the four-velocity of an element of the fluid, PIT the internal 
energy and p(c2 -t n) the total mass density as measured in the rest frame of the matter 
and which is separated into the non-varying part of the rest mass plus the relativistic 
mass associated with the internal energy of the fluid. 

AeJhe zero order N = 0 (Newtonian approximation) the metric is given, considering 
that Too = pc’, by 

( 3 . 1 ~ )  

where U is the Newtonian potential, the solution of the field equation at order N = 0:  

AU = -4nGp. (3.lb) 
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At this order no election of gauge is necessary and the metric tensor is invariant 
under the approximate PoincarC transformation, whose Lorentzian part is 

( 2 )  
7 = 7 + v2/27  - 6 .  V). (3.2) = ti - vi7 

In this case equations (2.7) imply U” = 0, which is automatically satisfied since p is a 
scalar, p ( x ” )  = ~’(8’): 

AU = A’U‘ (3.3) 
and A = A’+ 0 ( C 2 ) .  

in which gij = goi = goo = 0.  
At order N = 1, the field equations are homogeneous and we choose the usual gauge 

Then, at the first PNA, order N = 2, we have 

1 2 3  

2 2  3 
Sij = go0,ij + 8 rGp&j S O i  = -16rGpzi’ (3.4) 
4 
So0 = 1 6 ~ G p (  U’ - U + 4II + ;p /p)  -t 2( U, i)’ 

where zi = dx i/dt. 

The gauge functions W, and l%are restricted by equations ( 2 . 8 ~ )  and (2.9), being the 
right-hand sides of them: 

2 3 4 

A:,=O f: = -2 vu;,, f’= -2v’u:,,. (3.5) 

Details of the deduction of those functions are left to the Appendix. 
The function W, must satisfy 

2 

2 w:’ = 0 (3.6) 
2 2  

which implies that W, = W, is a static function. The integrability condition of equations 

(2.9) is obviously satisfied and we obtain g’ = -2 V’U;,, and the final restriction (2.10) is 
3 

3 2 
W”- V’WJ= -2v1l.J:. (3.7) 

Only gauge functions satisfying (3.7) give a PoincarB-invariant metric tensor at the 
required order N = 2. 

Clearly the ‘standard’ gauge (Will 1974) W, = U,,, W= 0 does not satisfy it. We can 
choose an infinite set of functions satisfying those equations, but there are two which 
give a diagonal space-metric tensor g,: 

2 3 

(2) 

2 3 w,= U,] w=-U,, (3.8) 

wl=O W=-2U,* 

and 
2 3 

We can also choose a gauge in which the term $ / a t 2  in the field equation for ioo is 
removed (that is one of the advantages of the standard gauge): 

2 3 
W] = 2 U,] w=o. 
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It can easily be shown that the gauge condition (3.8) is the harmonic gauge condition 
which comes from the de Donder condition 

(4-g gl*”),y = 0 (3.9) 

up to the first PNA. In order to extend the calculations to the next order of 
approximation, we will choose the harmonic gauge at the first PNA. 

4. Restrictions at the second post-Newtonian approximation 

In this section we assume the metric tensor has been put into the harmonic gauge up to 
the first PNA, and we find the restrictions to the gauge functions imposed by PoincarC 
invariance up to the second PNA (N = 4). 

At order N = 3 the metric equations are homogeneous and we choose a gauge in 
which g,, = goI = goo = 0. 

So, at order N = 4 we begin with the metric tensor at N = 2 in the harmonic gauge 

g,, = -2 US,, ;01=4u~ g j o  = 2 u2-4@ + X,tt (4. la) 

3 4 5  

2 

where 

AV, = -47i-Gpv‘ A@ = -47i-Gp(v2 + U + 4II + $ / p )  Ax=-2U. (4.lb) 

The functions S,, SoL and Soo are given (see I) by 

S , =  167i-Gp[v’v’- v ~ S , ,  -(2p/p)S,]-2A(U2+2@)Sll -4@,,,-26,U,~, 

4 5  6 

4 

- 4 ( ui, j + Uj,i ) , i  + X,rrij - 4 uu,ij (4.2a) 
5 

SO i = - 1 6 T G ~  [ ( v + 4 U + II + p / p )  U - 2 Uj - 1 2 U, i U ,  r + 8 Uj U, ij  - 8 Uj,i U, j (4.2 b )  

6 
So0 = 167i-Gp[v2(v2+4U + I I + p / p ) - (  U 2 + 2 @ ) + i ~ , r t ] - 8 (  

+ 12U,i@,i +8U,iUi,t- 12U(U,i)2- 16Ui,j(Ui,j- Uj,i)-3U,i~,tti. ( 4 . 2 ~ )  

The restrictions imposed by the PoincarC invariance, equations (2.8a) and (2.9), are 
now given by Ab, f: and f’ (details of their calculation can be found in the Appendix), 
which are 

4 5  6 

where 

(4.3a) 

(4.3b) 
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At this point it is useful to look at the gauge functions of the harmonic gauge, which 
we will denote by Wi(H) and W(H),  and which can be obtained by the expansion of the 
de Donder condition (3.9) up to the second PNA (see I): 

4 5 

i q H )  = 2@,i + 4 UiJ -$v, t t i  + 2 uu,i (4.4a) 

5 

W(H) = -2OJ +;xJrt - vu,, - 8 uiu,i -$u,iX,ti. (4.4b) 

We suggest a classification of the terms of these gauge functions according to the power 
in G they exhibit. From (3. lb)  and (4.lb) we see that this power corresponds to the 
number of the potentials U, x, @ and Vi that each term has. We will write W,(H; 1) for 

one potential, W,(H; 2 )  for two potentials and the same for W(H). According to the 
properties of these functions, when they are written in terms of the new coordinates 
using the Galilean transformations, Wi(H; 2 )  is a static term because it does not include 

velocities or time derivatives; therefore W’i(H; 2 )  = 0. 

4 

4 5 

4 

4 

4 
From ( 4 . 3 ~ )  we see that the gauge function W, required for PoincarC invariance has 

4 
the one-potential term Wi(l): 

4 4 
Wi(1) = Wi(H; 1). (4.5a) 

5 5  5 5 
From this and using the notation W= W(1)+ W(2), equation (2.10) with g’ defined in 

( 4 . 3 ~ )  implies that 
5 5 
W(1) = W(H; 1) .  

The final form of equation (2.10) can be expressed as 

(4.5b) 

6 ” ( 2 ) -  V’Wj(2) 4 = 4v’U’u:p (4.5c) 

Only gauges satisfying the restrictions (4.5) will give the metric tensor invariant 
under a PoincarC transformation up to the second PNA. It is remarkable that the 
one-potential terms of the harmonic gauge functions satisfy the restrictions (4.5) but the 
two-potential terms do not, as can be easily checked. Moreover, this is enough to 
maintain the PoincarC invariance of the equations of motion in the harmonic gauge, as 
was shown in I. 

An infinite set of functions W(2) and Wi(2) satisfying ( 4 . 5 ~ )  can be chosen. We will 
define a ‘quasi-harmonic’ gauge by the condition 

5 4 

4 4 
Wi(2) = Wi(H; 2 ) ;  ( 4 . 6 ~ )  

thus from ( 4 . 5 ~ )  

&(2) = 6 VU,,. (4.6b) 

Using that gauge, the space component of the metric tensor gij has the same 
functional form as that in the harmonic gauge, and also the equations of motion have in 

4 
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both gauges the same functional form. That relation between the harmonic gauge and 
the quasi-harmonic gauge at the second PNA is similar to the relation between the 
standard gauge and the harmonic gauge at the first PNA, which also have the same 
functional form for both g, and the equations of motion. 

Due to the form of the two-potential terms in the harmonic gauge functions, a 
further calculation at higher order would give non-PoincarC-invariant equations of 
motion. To obtain that invariance the gauge conditions (4.6) could be used. 

2 
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Appendix 

The first part of this Appendix is devoted to the deduction of expressions (3.5). 
The transformation (2.4b) which we must use now includes terms up to $’= 

2V’(&. V-  V’T) and ;=$V4r-4(&. V)V2.  From (2.7a), the evaluationof A:, needs 
only as much work as was needed in the Newtonian approximation for U” = 0. From 
(2.7b) and ( 2 . 7 ~ )  we need to know the parts of A‘g& and A’g& which do not include the 

gauge, that is S6, and ;bo (note that g’i, = 0). Those functions only include the Galilean 
transformation, so we only need a/dx‘ = a/a[‘ + V‘ 8/87 + O ( C - ~ ) ,  d / a t  = 8/87 + O(C-’), 
v’ = w ’  - V’ + O(C-’) where w =de’/d.r. Moreover, from equation ( 2 . 7 ~ )  we also need 
a term which comes from writing the Newtonian potential goo in the new coordinates up 

to the first PNA, which is A’goo (or A’$). To evaluate it we use (3.3), taking into account 

that U = U’+ C 2 f i a n d  the expansion of the Laplacian operator is A = A’+ c-”. This 
leads to 

2 

2 

3 4 

3 2 

2 

? 
2 2 

2 2 

A’f i=-VIVJU~l ,  -2V’Uj1,. (AI)  
2 

The rest of this Appendix is devoted to sketching some details of the calculations 

The transformation (2.4b) at N = 4 includes the terms 
leading to (4.3). 

6 J= -$4v17+iv2(&. V)V‘ 7] = &v67 - $ ( S .  V) v 4 .  

This transformation must be substituted in equations (2.7) and all the functions there 
must be expressed in termsof the new coordinates. For equation ( 2 . 7 ~ )  we only need 
the calculation of A’g’;], which is easily done from the field equations for g,, using the 

Galilean transformation (note that a’’ == -2  V‘U: + V 2  U‘ and U:’ = - V’U: ) and A’g,,, 
which has been calculated in 0 3 ; the rest of the terms have the same functional fo- im In 
the new and the old coordinates. Those are the calculations leading to A;,. 

4 4 

2, 

2. 

4 
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3 

For (2.7b) only the A'&, needs to be mentioned. The evaluation of A 'C ,  is made 

from the definition of U', equation (4 . lb) .  Substituting U' in terms of w' and V'  up to 
the post-Newtonian order, and similarly for the operator A, we finally obtain 

A' CIi: = - 4 7 r G p ' ( ~ ' * ) [ ( ~ .  V )  W '  - &( W. V )  V'  - 4 V 2 w ' ]  

2 2 

2 

-2VkU{,7k + V k V ' V ' U [ k [  +2VkV'Ui7k - VkV'U:,kl. 

The rearrangement of this and the rest of the terms leads to the first of equations (4.3b). 

The more laborious terms in ( 2 . 7 ~ )  are Afgoo, Af b and A'g'do. For the first one we 
must use the field equation for goo at the first PNA in the harmonic gauge and change the 

coordinates up to the post-Newtonian order. We also need 6, which from (Al)  and 
(4.1 b )  can be expressed by 

$ 6 

2 4  

2 

For A ' cwe  must use (3.31, expanding A up to the second post-Newtonian order, and 

U = U' + c-* 6+ cC4 6; this yields 
4 

2 4 

A ' 6 =  -V2 V 'V 'U( , ,  -2  V 2  V'U171 -- V 2  UI77 - ~ V ' V ' V k V ' X ~ ~ , k ~  
4 

- 2 v' v' VkX j711k 2 V'V'X [vr t ] .  

6 6 4 
Finally, for A'g'do: in the field equation for goo we have the term g,,U,,, and consequently 

we need to know g'il. This term can easily be obtained by integrating the field equation 

for gs only for the non-static terms, all of which are linear in the potentials CP, U, U,, x. 
Then the second of equations (4.3b) is obtained after a long but straightforward 
calculation. 

4 

4 
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